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o In 2005 the Nobel Prize for Chemistry was awarded jointed to Yves Chauvin, Robert 

H. Grubbs and Richard R. Schrock for ñthe development of the metathesis method 

in organic synthesisò 
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o Metathesis represents a very powerful CïC bond forming reaction that has been 

widely used both in academia and industry 
 

o General mechanism: 

 

 

 

 

 

 

 

o A continuing challenge has been the control of the geometry of the forming double 

bond, and this talk will focus on the preferential formation of Z-geometries 

Introduction 
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Introduction 

   Ĕ The Problem of Controlling Geometry 

o Alkene metathesis is a thermodynamic process that is often reversible 

o Olefin products can potentially undergo secondary reactions with the catalyst 

to isomerise to the more thermodynamically stable form 
 

o Therefore, in the majority of cases, the thermodynamic E-isomer results, or mixtures 

of E and Z geometries result. 
 

o Forming Z-selective alkenes represents a significant challenge : 
 

K. C. Nicolaou in 2005: 
 

ñé we still lack the ability to reliably predict (or achieve) product geometry for 

certain ring-closing metathesis reactions in complex situations. Indeed, this 

sometimes unpredictable formation of stereoisomeric mixtures represents one of 

the few significant blots on the landscape of ring-closing metathesis 

macrocyclization.ò 
 

o Only recently has Z-selectivity been achieved in a controllable way 

o First example reported by Schrock and Hoveyda in early 2009 
 

o Before this, however, there are still numerous examples of Z-olefins forming in 

metathesis reactions. 

Nicolaou, K. C. Angew. Chem. Int. Ed. 2005, 44, 4490-4527 
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Substrate Control 

   Ĕ Macrocyclizations 
o With medium and large rings mixtures of E and Z isomers tend to result 

o Delicate balance between kinetic and thermodynamic control, affected by: 

o Solvent, catalyst, temperatureé 

o Substitution pattern of substrate 

o Steric demand of substrate 

o Ring size to be formed 

o Presence of coordinating heteroatoms in substrate 

o Examples: 

o Thermodynamic vs. kinetic control (3.5 kcal difference):1 

 

 

 

 

 

 
 

o Remote substituent effects:2 

1. Fürstner, A.; Radkowski, K.; Wirtz, C.; Goddard, R.; Lehmann, C. W.; Mynott, R. J. Am. Chem. Soc. 2002, 124, 7061-7069;  
2. Fürstner, A.; Thiel, O. R.; Blanda, G. Org. Lett. 2000, 2, 3731-3734 
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Substrate Control 

   Ĕ Acrylonitriles and Enynes 

o In cross-metatheses where one alkene bears an sp hybridized substituent the Z-olefin 

is preferentially formed: 

 

o Acrylonitriles:1 

 

 

 

 

 

 

 

o Enynes: 2 

 

 

 

 

 

 

o Kinetic product forms, with alkene substituents orientated away from bulky NHC 

o Acrylonitriles and enynes show low reactivity in metathesis ï hence once product 

forms it is inert to post-metathesis isomerisation to the thermodynamic E-product 

1. Randl, S.; Gessler, S.; Wakamatsu, H.; Blechert, S. Synlett. 2001, 3, 430-432;  
2. Hansen, E. C.; Lee, D. Org. Lett. 2004, 6, 2035-2038 
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Indirect Control of Alkene Geometry 

   Ĕ RCAM/Lindlar Hydrogenation 

o For larger rings (>12 mem) possible to use a ring-closing alkyne metathesis, followed 

by Lindlar hydrogenation: 

 

 

 

 

o Total synthesis of turrianes: 

Fürstner, A.; Stelzer, F.; Rumbo, A.; Krause, H. Chem. Eur. J. 2002, 8, 1856-1871 
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Indirect Control of Alkene Geometry 

   Ĕ RCAM/Lindlar Hydrogenation 

o For larger rings (>12 mem) possible to use a ring-closing alkyne metathesis, followed 

by Lindlar hydrogenation: 

 

 

 

 

o Total synthesis of turrianes: 

 

 

 

 

 

 

 

 

 

 

o Disadvantages: 

o Fewer commercially available acetylenes, syntheses tend to be less concise 

than for alkenes 

o Can only access disubstituted alkenes 

o Can be difficult to completely remove Pd catalyst and Pb poison 

Fürstner, A.; Stelzer, F.; Rumbo, A.; Krause, H. Chem. Eur. J. 2002, 8, 1856-1871 
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Indirect Control of Alkene Geometry 

   Ĕ Silicon Tethering 

o Use of a temporary silicon tether renders metathesis intramolecular, forming 

small/medium rings where the Z-isomer is the only geometry that can form1 

o Reduces enthalpic and entropic cost of metathesis, substituents on Si have a Thorpe-

Ingold effect 

o Applied to acyclic metathesis, ie:2 

 

 

 

 

 

 

 

 

 

 

o Disadvantages: 

o Low atom ecomony 

o Complicates a synthesis and adds steps 

o Principally applied to acyclic systems, not used for macrocycles 

1. Ļusak, A. Chem. Eur. J. 2012, 18, 5800-5824 
2. Van de Weghe, P.; Bourg, S.; Eustache, J. Tetrahedron 2003, 59, 7365-7376 
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Indirect Control of Alkene Geometry 

   Ĕ RCM of Vinylsiloxanes 
o Ring-closing metathesis of vinylsiloxanes gives high E-selectivity: 

o Protodesilylation ï Z-disubstituted alkene:1 

 

 

 

 

 

 
 

o Alternatively, subsequent cross-coupling can provide access to both E- and  

      Z-trisubstituted alkenes:2 

1. Wang, Y.; Jimenez, M.; Hansen, A. S.; Raiber, E-S.; Schreiber, S. L.; Young, D. W. J. Am. Chem. Soc. 2011, 133, 9196-9199 
2. Wang, Y.; Jimenez, M.; Sheehan, P.; Zhong, C.; Hung, A. W.; Tam, C. P.; Young, D. W. Org. Lett. 2013, 15, 1218-1221 
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Catalyst Control  

Ĕ Introduction 

o Currently, there are two types of Z-selective catalyst that have been reported 
 

o Molybdenum and tungsten-based complexes 
 

o Ruthenium-based complexes 

 

o There are particular challenges associated with designing such catalytic systems: 
 

o Need to generate a kinetic, thermodynamically unfavourable product 
 

o Catalysts need not to undergo secondary isomerisation reactions to 

equilibrate the product to the more stable E-geometry (as is seen with most 

conventional metathesis catalysts) 
 

o Catalysts need to be stable to decomposition 
 

o Needs to survive the duration of the reaction in order to reach high 

turnover numbers (TONs) 
 

o Decomposition products may promote unwanted side reactions with the 

products ï for example, [Ru]ïH species formed by the decomposition of 

Ru-catalysts can cause olefin migration in both starting materials and 

products 

 

Ibrahem, I., Yu, M., Schrock, R. R., Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3844-3845 
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Catalyst Control ï Mo/W 

   Ĕ Introduction 

o Z-selective metathesis catalysts first reported by Schrock and Hoveyda in early 

2009 

 

o Using a stereogenic-at-Mo monoaryloxide-pyrrolide (MAP) catalyst in a ring-

opening/cross metathesis (RO/CM) reaction: 

 

 

 

 

 

 

 

o Since 2009 Mo- and W-MAP complexes have also been  

      used for ring-closing metathesis (RCM), ring-opening  

      metathesis polymerisation (ROMP), homocoupling of 

      olefins and cross-metathesis 
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Ibrahem, I., Yu, M., Schrock, R. R., Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3844-3845 



Catalyst Control ï Mo/W 

   Ĕ MAP Catalysts 

Imido Ligand 

- Adamantyl or aryl 

Alkylidene Ligand 

- Bulky group to prevent  

bimolecular decomposition 

(see later) 

- R = CMe3 or CMe2Ph 

Metal Centre 

- Choice of Mo or W 

- Mo: 

- More active 

- More prone to 2° 

isomerisation 

- Very air/moisture 

sensitive 

- W: 

- Less active, but more 

selective 

- Less prone to 

isomerisation 

- Air/moisture tolerant 

Imidazole Ligand 

- With or without Me in 

2,5-positions 

Aryloxide Ligand 

- Very bulky to get good Z-

selectivity (see later) 

- Binol derivatives: 

 

 

 

 

 

- Achiral aryloxides: 

 

 

 

 

- Aryloxy-ligand can freely 

rotate 
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